

DUST ENVIRONMENT OF THE MOON:

EXPECTATIONS FOR LADEE/LDEX

M. Horányi, A. Hasenfratz, Z. Sternovsky, E. Grün University of Colorado, Boulder

Outline:

- 1) Sources of dust:
 - a) interplanetary dust bombardment
 - b) plasma effects
- 2) Lunar Dust Experiment
- 3) Model predictions
- 4) Need for surface experiments

Observations

Horizon glow

Excess solar brightness

LEAM

Interplanetary Dust Bombardment

100 ton/day @ Earth — 5 ton/day @ Moon

Love and Brownlee, 1993

Secondary Ejecta

Galileo @ Europa

Parameters: yield, ejecta mass and velocity distributions

Lunar Ejecta

Probability of 1 e charge P_e

Plasma parameters

SOLAR WIND CONDITIONS

D	A	Y	SI	D	E
-		_		_	_

 $10^{-3}a_{\mu}^{2}$

NIGHTSIDE

 $5 \times 10^{-4} a_{\mu}^2$

Photoelectron flux	Γ_0	$\mathrm{cm^{-2}s^{-1}}$	3×10^{9}	0
Plasma density	n_p	${ m cm^{-3}}$	100	0.01
Plasma temperature	T_P	eV	2	10
Debye length	λ_D	m	1	$> 10^{3}$
Sunface notantial	т.	V	1.5	-1000
Surface potential	Φ_S		+5	
Surface charge density	_	$ m cm^{-2}$	3×10^{4}	2×10^{3}
Surface electric field	E_s	V/m	5	< 1

Most grains remain uncharged on the surface

Characteristic grain size

Colorado Center for Lunar Dust and Atmospheric Studies

LDEX Impact Rates

Colorado Center for Lunar Dust and Atmospheric Studies

LDEX expectations

Temporal variability

- 1) Spherically symmetric continually present ejecta cloud
- 2) Solar cycle variability of the UV flux (11 years)
- 3) Temporal & spatial variability due to meteor showers on time scales of days
- 4) Density enhancements of small grains over the terminators due to plasma effects, expected to be correlated with solar wind conditions

Summary

LADEE science objective 2: 'Characterize the lunar exospheric dust environment and measure any spatial and temporal variability and impacts on the lunar atmosphere.'

Surface package to investigate dusty plasma processes:

- 1) stereo imaging
- 2) electron and ion energy distribution
- 3) electric fields
- 4) dust instrumentation to measure: mass, charge, velocity